Cratering Theory
1994: Lorenz, R.D. Crater lakes on Titan: Rings, horseshoes and bullseyes. Planetary and Space Science 42, 1-4.
1995: CA Griffith, K Zahnle. Influx of cometary volatiles to planetary moons: the atmospheres of 1000 possible Titans. Journal of Geophysical Research 100, 16,907-16,922.
1995: CA Griffith, K Zahnle. Influx of cometary volatiles to planetary moons: the atmospheres of 1000 possible Titans. Journal of Geophysical Research 100, 16,907-16,922.
1997: Ralph D. Lorenz. Impacts and cratering on Titan: a pre-Cassini view. Planetary and Space Science 45, 1009-1019.
2003: Artemieva. N & Lunine, J. Cratering on Titan: impact melt, ejecta, and the fate of surface organics. Icarus 164, 471-480.
2005: DP O'Brien, RD Lorenz, JI Lunine. Numerical calculations of the longevity of impact oases on Titan. Icarus 173, 243–253.
2005: Korycansky, D.G. & Zahnle, K.J. Modeling crater populations on Venus and Titan. Planetary and Space Science 53, 695–710.
------------------------------------------------------------------------------------------------------------------2005: Korycansky, D.G. & Zahnle, K.J. Modeling crater populations on Venus and Titan. Planetary and Space Science 53, 695–710.
Surface Age
2007: Lorenz, R.D., and 12 colleagues. Titan’s young surface: Initial impact crater survey by Cassini RADAR and model comparison. Geophys. Res. Lett. 34, L07204, doi:10.1029/2006GL028971.
2009: Jaumann, R. & Neukum, G. The surface age of Titan. Lunar Planet. Sci. 40 (Abstract #1641).
2009: Jaumann, R. & Neukum, G. The surface age of Titan. Lunar Planet. Sci. 40 (Abstract #1641).
2009: L. Le Corre, C. Quantin, S. Le Mouélic, C. Sotin. Dating Titan’s surface with impact crater count from the Cassini Radar swaths. EPSC Abstracts, 4, EPSC2009-319-1.
------------------------------------------------------------------------------------------------------------------
Crater Observations
2008: Le Mouelic, S. + 17 more. Mapping and interpretation of Sinlap crater on Titan using Cassini VIMS and RADAR data. Journal of Geophysical Research E: Planets, 113 (abstract).
2010: Charles A. Wood, Ralph Lorenz, Randy Kirk, Rosaly Lopes, Karl Mitchell, Ellen Stofan, & the Cassini RADAR Team. Impact Craters on Titan. Icarus 206, 334–344.
2010: Soderblom, J. and others. Geology of the Selk impact crater region from Cassini VIMS observations. Icarus 208, 905-912.
2012: Neish, C. D., and Lorenz, R. D. Titan’s global crater population: A New assessment. Planet. Space Sci., 60(Jan.), 26–33. doi: 10.1016/j.pss.2011.02.016.
2013: C.D. Neish, R.L. Kirk, R.D. Lorenz, V.J. Bray, P. Schenk, B. Stiles, E. Turtle, K. Mitchell, A. Hayes, and the Cassini RADAR Team. Crater topography on Titan: Implications for landscape evolution. Icarus 223, 82-90.
2014: C.D. Neish, R.D. Lorenz. Elevation distribution of Titan’s craters suggests extensive wetlands. Icarus 228, 27-34.
2015: C.D. Neish and 14 others. Spectral properties of Titan's impact craters imply chemical weathering of its surface. Geophys. Res. Lett. 42, 3746–3754.
Key Points: The most degraded craters have rims and ejecta blankets with spectral characteristics that suggest that they are more enriched in water ice than the rims and ejecta blankets of the freshest craters on Titan. We propose an evolutionary sequence such that Titan's craters expose an intimate mixture of water ice and organic materials, and chemical weathering by methane rainfall removes the soluble organic materials, leaving the insoluble organics and water ice behind.
------------------------------------------------------------------------------------------------------------------
2010: Soderblom, J. and others. Geology of the Selk impact crater region from Cassini VIMS observations. Icarus 208, 905-912.
2012: Neish, C. D., and Lorenz, R. D. Titan’s global crater population: A New assessment. Planet. Space Sci., 60(Jan.), 26–33. doi: 10.1016/j.pss.2011.02.016.
2013: C.D. Neish, R.L. Kirk, R.D. Lorenz, V.J. Bray, P. Schenk, B. Stiles, E. Turtle, K. Mitchell, A. Hayes, and the Cassini RADAR Team. Crater topography on Titan: Implications for landscape evolution. Icarus 223, 82-90.
2014: C.D. Neish, R.D. Lorenz. Elevation distribution of Titan’s craters suggests extensive wetlands. Icarus 228, 27-34.
2015: C.D. Neish and 14 others. Spectral properties of Titan's impact craters imply chemical weathering of its surface. Geophys. Res. Lett. 42, 3746–3754.
Key Points: The most degraded craters have rims and ejecta blankets with spectral characteristics that suggest that they are more enriched in water ice than the rims and ejecta blankets of the freshest craters on Titan. We propose an evolutionary sequence such that Titan's craters expose an intimate mixture of water ice and organic materials, and chemical weathering by methane rainfall removes the soluble organic materials, leaving the insoluble organics and water ice behind.
Crater Rate Models
2003: Zahnle, K., Schenk, P., Levison, H., Dones, L., Cratering rates in the outer Solar System. Icarus 163, 263–289.
2005: Lunine, J.I., Artemieva, N.A., Lorenz, R.D., Flamini, E., Numerical modeling of impact cratering on Titan with implications for the age of Titan’s surface. Lunar Planet. Sci. 36 (Abstract #1504).
------------------------------------------------------------------------------------------------------------------
Popular Articles about Titan Craters
2008: Impact Craters (Afekan discovery and Sinlap comparison) JPL press release
2013: Titan's Missing Impact Craters --"A Weirdly Earthlike Place"
2013: Titan's Missing Impact Craters --"A Weirdly Earthlike Place"
2013: Titan Gets a Dune "Makeover" JPL press release
No comments:
Post a Comment